

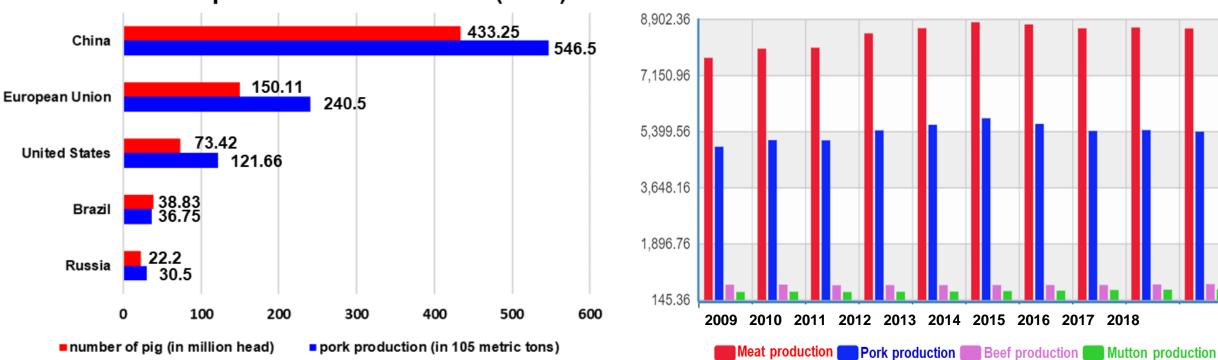
Strategies to reduce antibiotics in swine production in China

Prof JJ Wang China Agri University Gene Jin, PhD Meritech International

Dec 17 2019 Bangkok

Briefing of Meritech and Founder-Dr Gene Jin

More than 30 years experiences in animal and feed industry worldwide; .

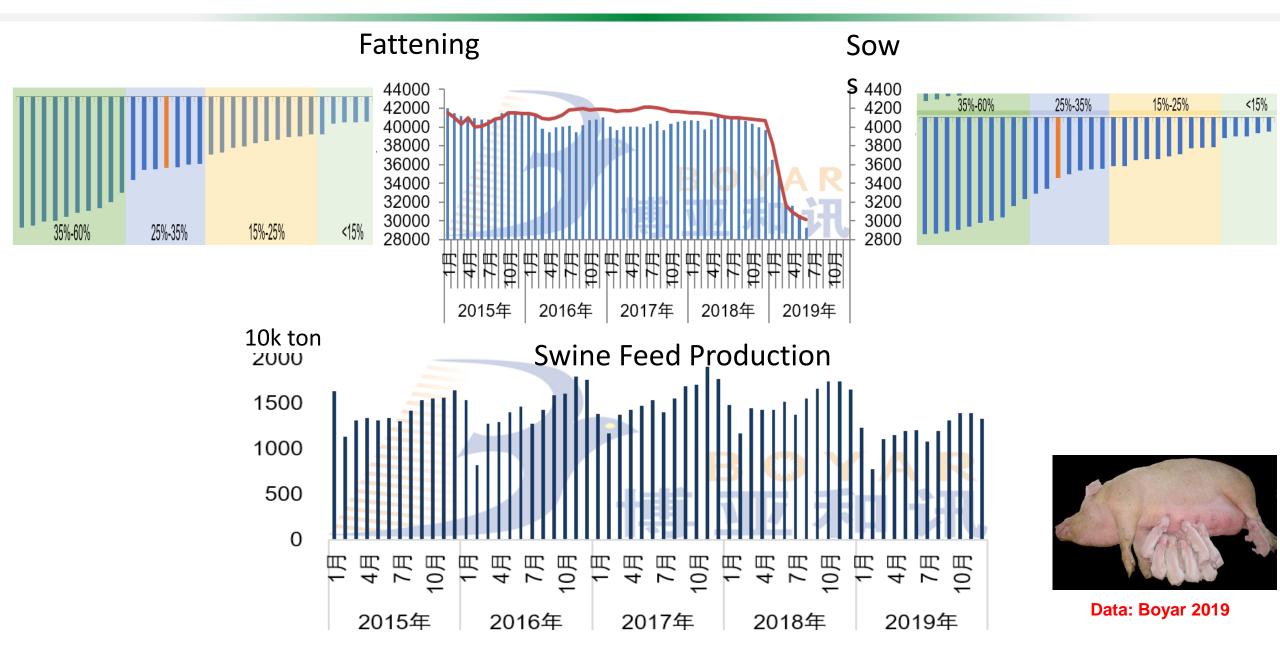

- Working Experience
 - Singapore: Danisco-Asia Pacific Tech Mgr;
 - Malaysia: Biomin-Asia Tech Mgr;
 - China: Lucta-Managing Director China;
- bEducation
 - Canada: Post-Doc of Mcgill/Manitoba Uni;
 - Malaysia: PhD of University Putra Malaysia;
 - China: MSc/BSc: Nanjing Agri Uni (top 2);
 - MBA-China-Europe Itnl Business School; Guelph Uni of Canada;
- From 2007 till now: co-founder and managing director of Meritech

Meritech Intl: Biotechbased company to developing green feed additives worldwide;

- Our operation offices are located in both Singapore and China.
- Meritech was set up in 2007 and market to China, Vietnam, Korea, Taiwan, Malaysia, The Philippines, Sri Lanka and so on.
- Our production is in American Industry Park, Guangzhou.

China Animal Industry

Pork production in numbers (2018)


Swine is the most important food animals in China!

Meat production in China in the past decade (million tons)

Data adapted from NBS by Prof Wang JJ

2015 2016 2017 2018

Current Swine Production after ASF

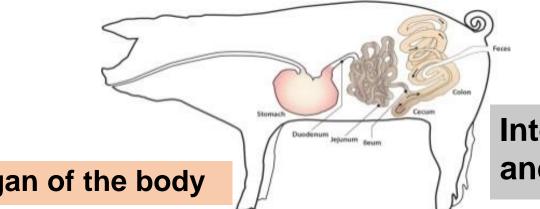
Sweden	Complete ban, 1986
European Union	Complete ban, 2006
Australasia	Case -by- case
North America	Case -by- case, in legislation
Korea	Complete ban, 2012
Vietnam	banned
Indonesia	banned
Thailand	?
China	2020 June 30; no AGP use
FAO/WHO	Monitor, risk assessment

China Regulations

- > 2017: stop liscensing Colistin GP
- > 2020 Jan 01: stop liscensing all AGPs
- > 2020 July 1st: stop AGPs use
- No liscense; no production no use no export?

Withdraw of antibiotics from animal feed

- If no alternative technologies to be developed!!!
 - Reducing productivity
 Increasing cost
 Increasing disease incidence
 Economic loss by farmers
- There is need to develop alternative technologies for the sustainable growth of animal industry!!!



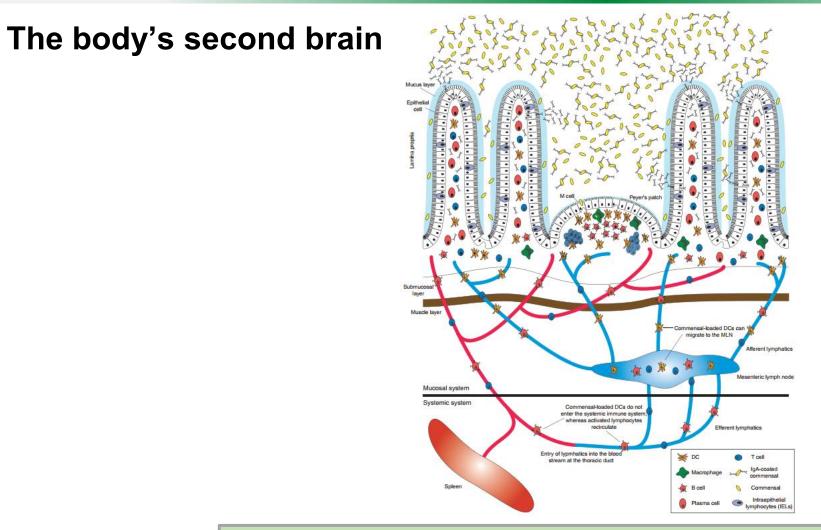
IERITECH

Understanding gut health is key in AGP-free diets

The gastro-intestinal tract (GIT)

Dictates health and well-being of an animal

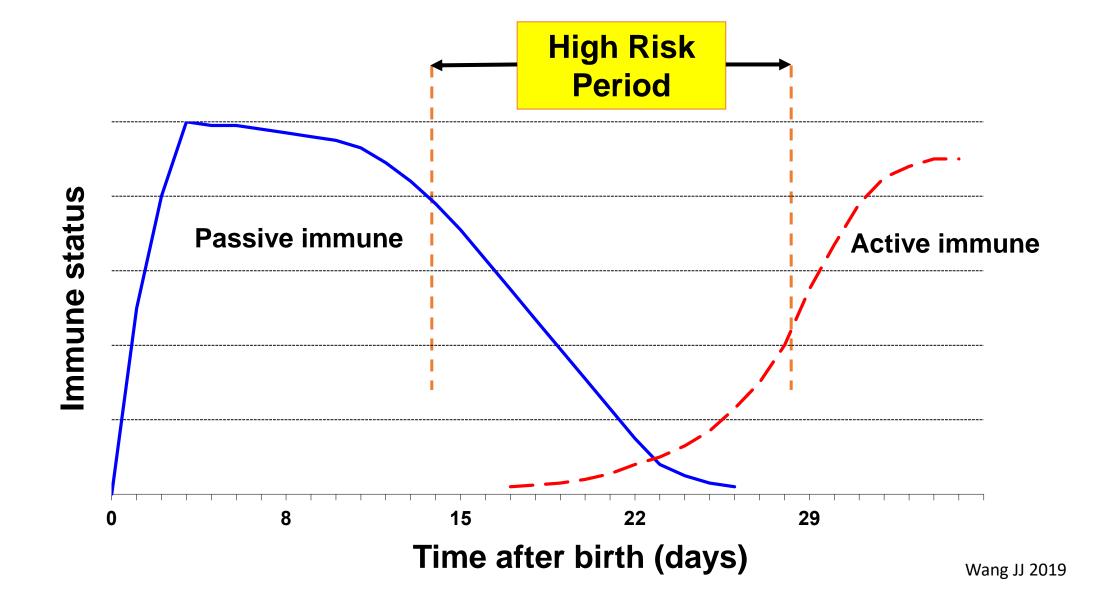
Largest immune organ of the body


Interface between non-sterile and sterile environments

Needs a balanced microflora to function efficiently

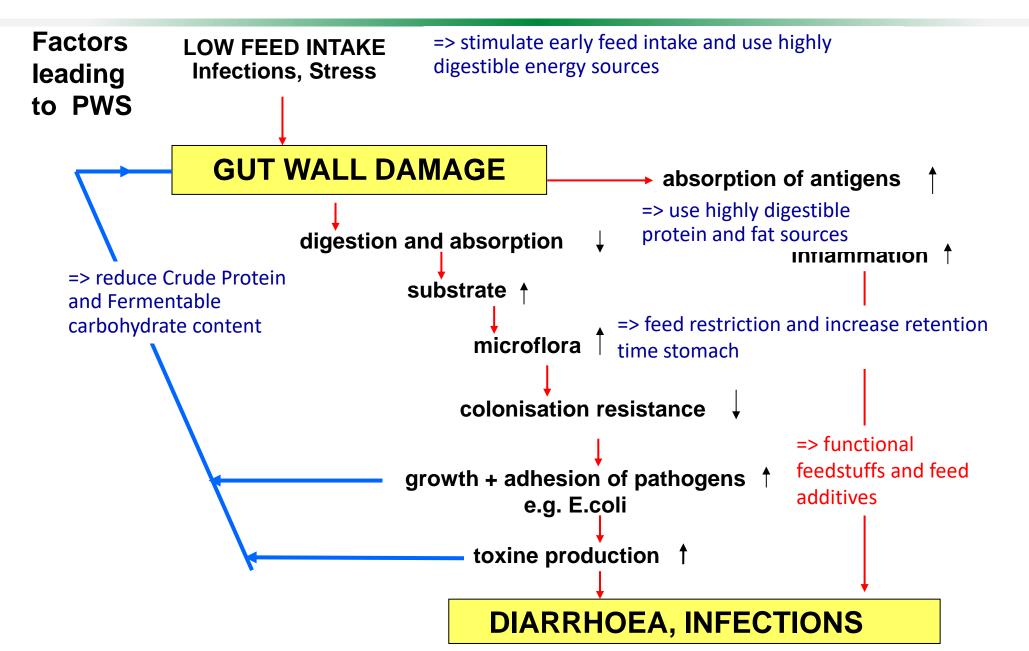
Bacteria, viruses, fungus, protozoa

Intestinal immune geography

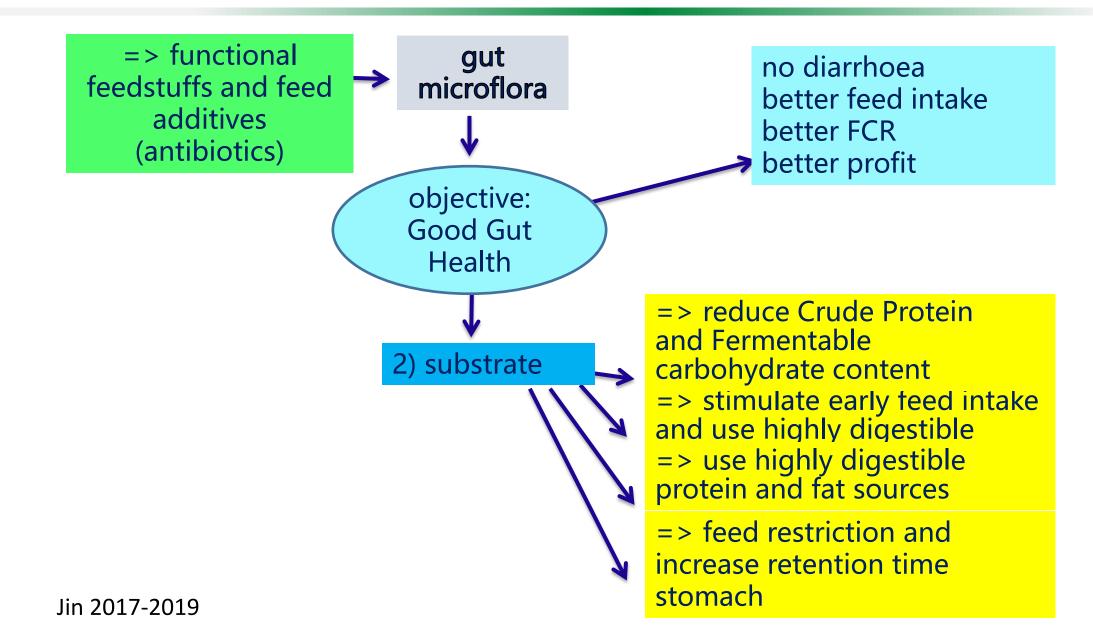


Commensal bacteria can mediate intestinal immunity

Macpherson et al., 2005


Changing immune systems

Strategies to formulate piglets AGP-free diets



SFR 2015-2019

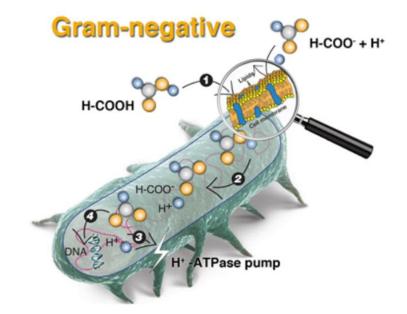
Suggestions to modify feed formulation for piglets

- ZnO and antibiotic usage can be reduced via feed formulation (reduction crude protein, soluble fibers and increased u/s ratio) and feed additives (organic acids, phytogenics, MCFA)
- 2. Feedstuff choice can increase feed intake and improve gut health (fish meal, plasma protein, whey, highly digestible plant proteins & fats, synthetic amino acids)
- 3. Functional feed additives can improve nutrient digestion, promote gut development and/or reduce the growth of pathogenic bacteria
- 4. Feed processing improves digestion and feed efficiency i.e. pelleting/expanding grains, spray dried fats
- 5. Inert carbohydrate sources (rice/oat/sunflower seed hulls, straw) can be used in prestarter feeds to reduce the energy content, increase feed intake and increase gut development.

One objective; Two targets; Multiple nutritional tools Мектесн

Alternative to antibiotics in China

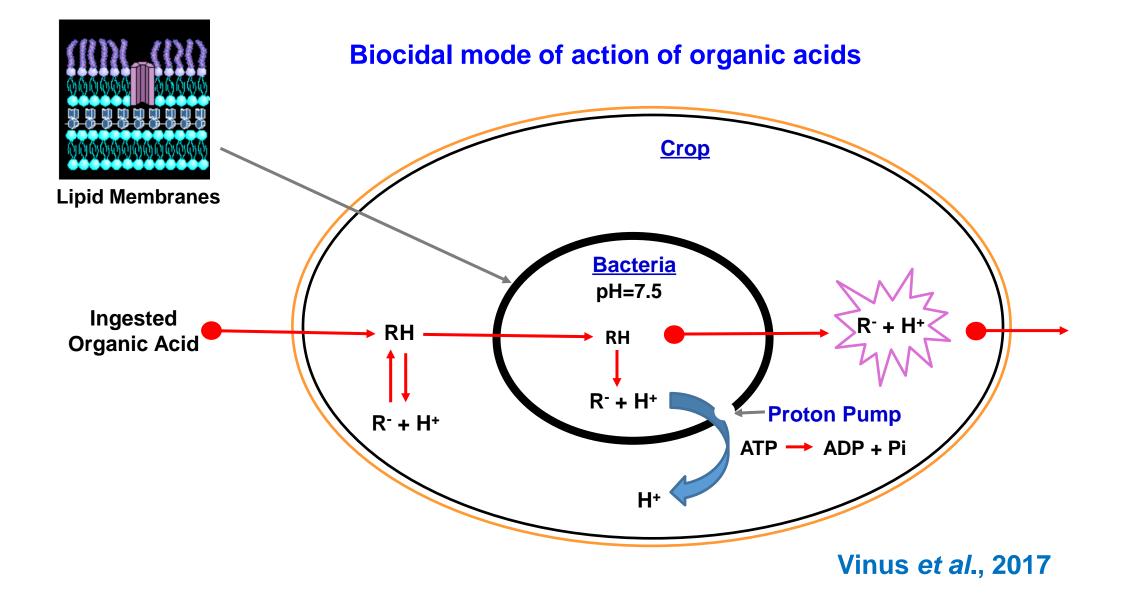
- ✓ **Probiotics**: Lactobacillus, Bifidobacterium, Enterococcus...
- Antimicrobial peptides
- ✓ **Organic acids**: Benzoic acid, acetate, propionate, butyrate...
- Phytogenics
- ✓ Prebiotics: FOS, isomalto-oligosaccharides...
- Synbiotics: Probiotics + prebiotics
- ✓ Feed enzymes: Specific enzymes, protease, amylase and lipase...
- Minerals: Copper sulfate, zinc oxide...
- ✓ Bacteriophage
- Therapeutic antibodies: egg-yolk antibodies


	No. of studies	% Change in daily gain
Antibiotics	15	+11
Organic acids	40	+7.1
Phytogenics	19	+2.6
Enzyme	9	+2.1
Microbial culture	14	+1.0
Oligosaccharides	2	?

De Lange et al., 2010; Kjeldsen et al., 2018

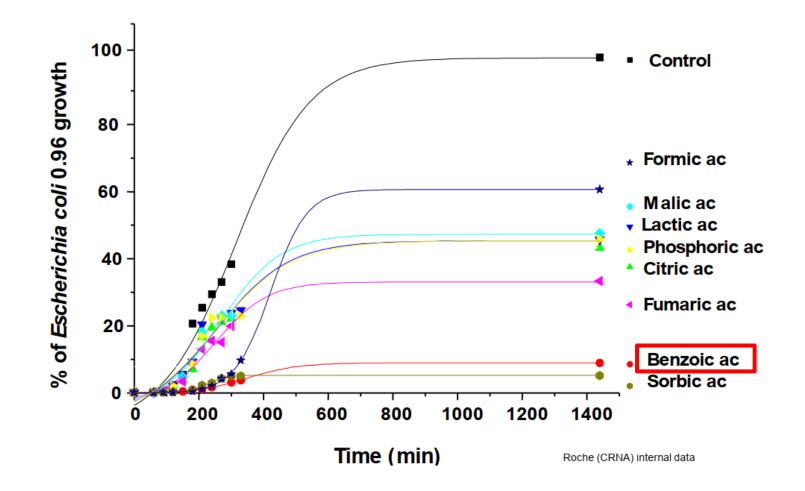
Organic acids

The first application of organic acids in monogastric animal production was aimed at the preservation of the feed against microbial spoilage.


- \checkmark propionic acid
- \checkmark butyric acid
- \checkmark sorbic acid
- \checkmark acetic acid
- \checkmark succinic acid
- ✓ benzoic acid
- \checkmark lactic acid
- \checkmark formic acid
- \checkmark citric acid
- ✓ fumaric acid

MERITECH

But due to the broad antimicrobial activity of organic acids these compounds were recognized as particularly useful to improve performance via a modulation of the gut microflora.


Organic acids: antibacterial mechanisms

MERITECH

MIC of most common organic acids

Antimicrobial activity of organic acids (1 mg/ml) on *Escherichia coli* 0.96

Probiotics

Probiotics have been defined by the World Health Organization as "microorganisms which, administered live and in adequate amounts, confer a benefit to the health of the host."

✤ Mechanisms

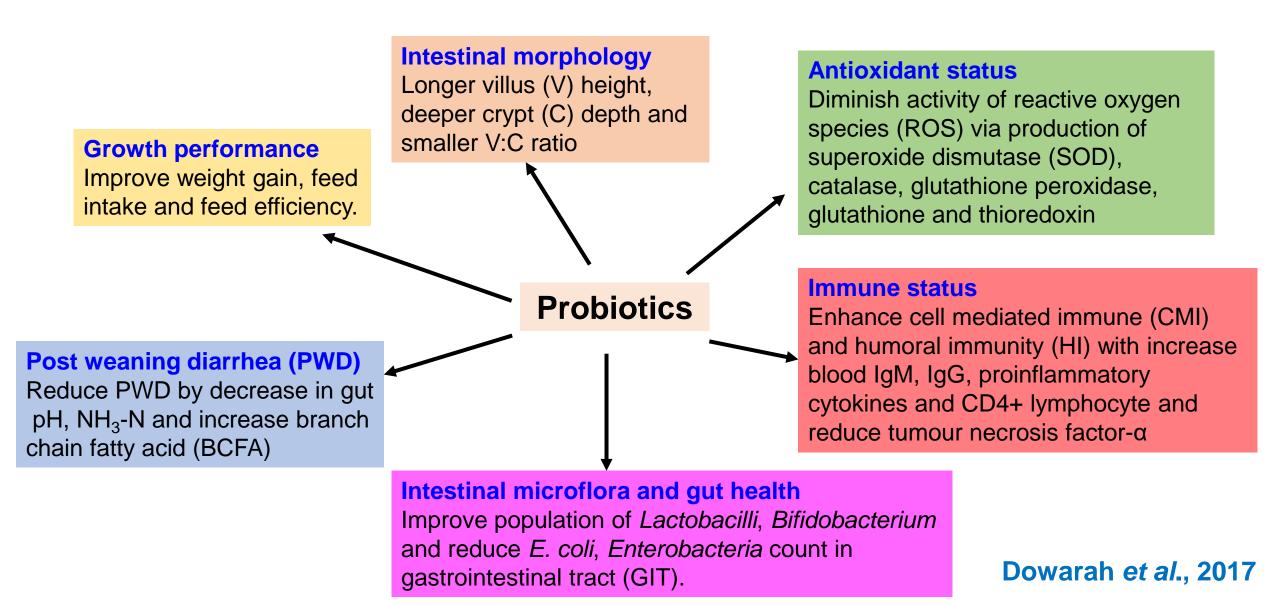
- destroy pathogenic microorganisms by producing antimicrobial compounds (bacteriocins and organic acids)
- improve gastrointestinal microbial environment by adherence to intestinal mucosa thereby preventing attachment of pathogens
- competing with pathogens for nutrients stimulate the intestinal immune responses
- improve the digestion and absorption of nutrients

Common probiotics used in swine industry

Genus	Species
Lactobacillus	L. acidophilus; L. casei; L. delbrueckii sub sp.
	Bulgaricus; L. brevis; L. curvatus; L. cellobiosus; L.
	fermentum; L. plantarum; L. reuteri; L. salivarius sub
	sp. thermophilus; L. gasseri
Bifidobacterium	B. bifidum; B. adolescentis; B. animalis; B. infantis;
	B. longum; B. pseudolongum; B. thermophilum
Lactococus	L. cremori; L. lactis
Enterococcus	E. faeciu
Bacillus	subtilis; coagulans; cereus; licheniformis
Yeast	Saccharomyces cerevisiae; Aspergillus oryzae

Dowarah *et al.*, 2017

In vitro antibacterial activity of the most widely used probiotic bacteria


	Lactobacillus acidophilus	Lactobacillus plantarum	Lactobacillus rhamnosus	Lactobacillus sakei	Lactobacillus casei	Lactobacillus gasseri	Lactobacillus johnsonii
Staphylococcus aureus	+	+	-	-	-	+	+
Listeria monocytogenes	+	+	-	+	-	-	+
Salmonella spp	+	+	-	-	+	+	+
Shigella spp	+	+		-			+
Klebsiella spp	+	+	+	-	+		
Escherichia coli	+	+	+	+	+	+	+
Pseudomonas aeruginosa	+	+	-	-	-	-	-
Yersinia spp	+	-	-	-	-	-	+
Clostridia spp	-	+	-	-	-	+	

Angelakis et al., 2013

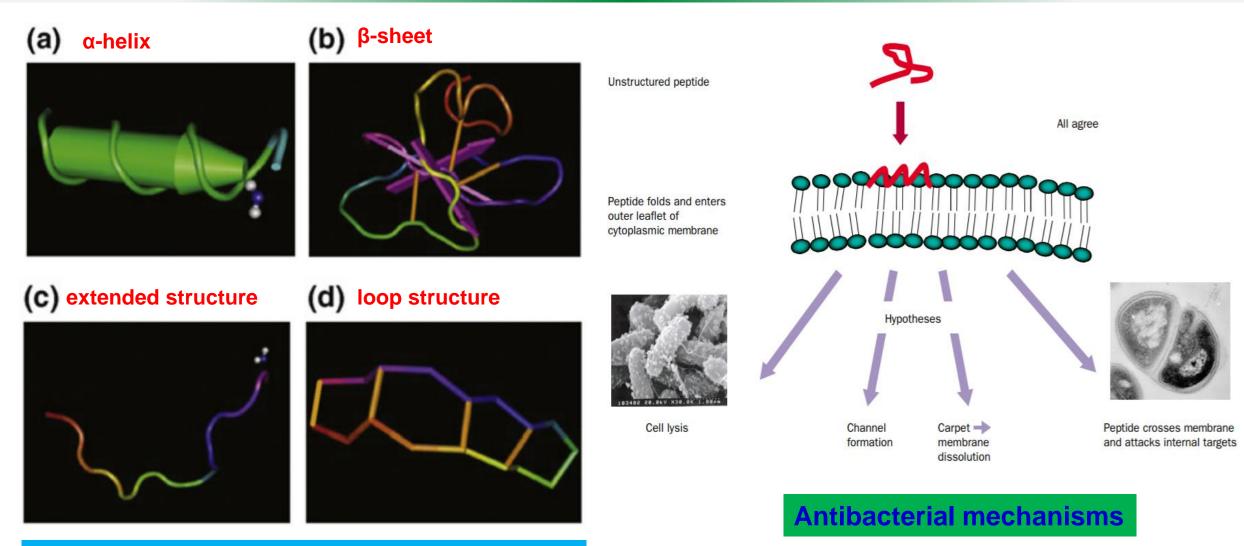
Effect of feeding different Lactobacillus spp. in various categories of pigs

Application	Strain	Probiotic Effects	References
	L. fermentum 15007	increase average weight gain, improve intestinal immunity	Liu <i>et al</i> ., 2014
Neonatal pigletsE. faecium EF1L. casei		induce a strong anti-inflammatory response in the small intestine	Huang <i>et al</i> ., 2012
		decrease the number of <i>E. coli</i> colonizing jejunal mucosa of gnotobiotic piglets	Bomba <i>et al</i> ., 1999
	L. reuteri BSA131	improve weight gain and feed conversion, reduce the	
Weaned	LAB complexes	improve growth performance, increase apparent ileal digestibility of crude protein, crude fiber and organic matter	Giang <i>et al</i> ., 2010
piglets	L. rhamnosus GG	ameliorate diarrhea, increase sIgA concentrations and attenuate the elevation of serum IL-6 induced by <i>E. coli</i> K88	Zhang <i>et al</i> ., 2010
	I amylovorus and increase monounsaturated and polyunsaturated fatty acids		Ross <i>et al</i> ., 2012
Growing	L. plantarum ZJ316	improve weight gain and feed conversion, reduce the incidence of diarrhea, improve meat quality	Suo <i>et al</i> ., 2012
Growing- finishing LAB complexes		increase average dairy gain, improve feed conversion, increase digestibility of crude protein and organic matter	Giang <i>et al</i> ., 2011
pigs	<i>E. faecium</i> SF68	increase nutrient digestibility and decrease fecal NH ₃ -N, H_2S and volatile fatty acid concentrations	Chen <i>et al</i> ., 2006

The scenario of using probiotics for swine production

Antimicrobial peptides (AMPs)

AMPs are small biological molecules (<10 kDa, 12–50 amino acids) with a broad-spectrum of activity against bacteria, fungi, protozoa, and some viruses


+ AMPs are widely regarded as the alternative to antibiotics

* 2012, in Paris, the 1st symposium "International symposium on alternatives to antibiotics" organized by WHO concluded "antimicrobial peptide is a potential antibiotic alternative".

AMPs: structure and mechanisms

Structure of antimicrobial peptides (AMPs)

Hancock, 2001; Lai et al., 2008

Effects of AMPs on the growth performance of weaning pigs

Antimicrobial Peptide (AMP)	Dose, mg/kg	Treatment Effects	References		
		ADG	ADFI	F:G	
AMP-A3	60 90	2 5	1 2	0 -5	Yoon <i>et al.,</i> 2012
AMP-P5	40 60	4 8	1 3	-2 -5	Yoon <i>et al.</i> , 2013
AMP microcin J25	2	7	0	-8	Yu <i>et al.</i> , 2017
Lactoferrin	1000	34	17	-15	Wang <i>et al.,</i> 2007
Lactoferrin	1000	42	21	-17	Wang <i>et al.,</i> 2006
Bovine lactoferrin	1250 2500	16 13	15 13	0 0	Wang <i>et al.,</i> 2008
Bovine lactoferrin-lactoferrampin	100	24	17	-6	Tang <i>et al.,</i> 2007
Composite antimicrobial peptides	4000	-6	-17	-15	Xiao <i>et al.,</i> 2013
Composite antimicrobial peptides	400	0	0	-2	Shi <i>et al.,</i> 2017
Cecropin AD	400	4	1	-3	Wu <i>et al.,</i> 2012
Recombinant plectasin	60	61	38	-10	Wan <i>et al.,</i> 2016

Wang JJ 2019

Effects of AMPs on the gut microbiota in weanling prostect

Antimicrobial Peptide	Treatment Effects	References
Lactoferrin	Reduced total viable counts of small intestine <i>E. coli</i> and <i>Salmonella</i> in the small intestine	Wang <i>et al.,</i> 2007
Bovine lactoferrin	Decreased the counts of <i>E. coli</i> in the ileum, cecum and colon and increased the counts of <i>Lactobacilli</i> and <i>Bifidobacteria</i> in the ileum, caecum and colon	Tang <i>et al.,</i> 2007
AMP-A3	Reduced total anaerobic bacteria, coliforms and <i>Clostridium spp</i> . in the ileum, cecum and feces	Yoon <i>et al.,</i> 2012
AMP-A5	Reduced fecal and intestinal coliforms and caecal Clostridium spp	Yoon <i>et al.,</i> 2013
AMP microcin J25	Decreased the counts of <i>E. coli</i> in the feces, increased the counts of <i>Lactobacilli</i> and <i>Bifidobacteria</i> in the feces	Yu <i>et al.,</i> 2017
Potato protein	Decreased viable counts of total bacteria, coliforms and <i>Staphylococcus spp</i> . in cecum and rectum	Jin <i>et al.,</i> 2008
Cecropin AD	Decreased total aerobes while increasing total anaerobes in the ileum and increased the numbers of <i>Lactobacillus</i> in the cecum	Wu <i>et al.,</i> 2012
Recombinant plectasin	Increased the abundance of <i>Bifidobacterium</i> in the ileum	Wan <i>et al.,</i> 2016
Composite AMP	Decreased the counts of <i>E. coli</i> in the feces	Shi <i>et al.,</i> 2017

Wang JJ 2019

Development of phytogenics prior to production

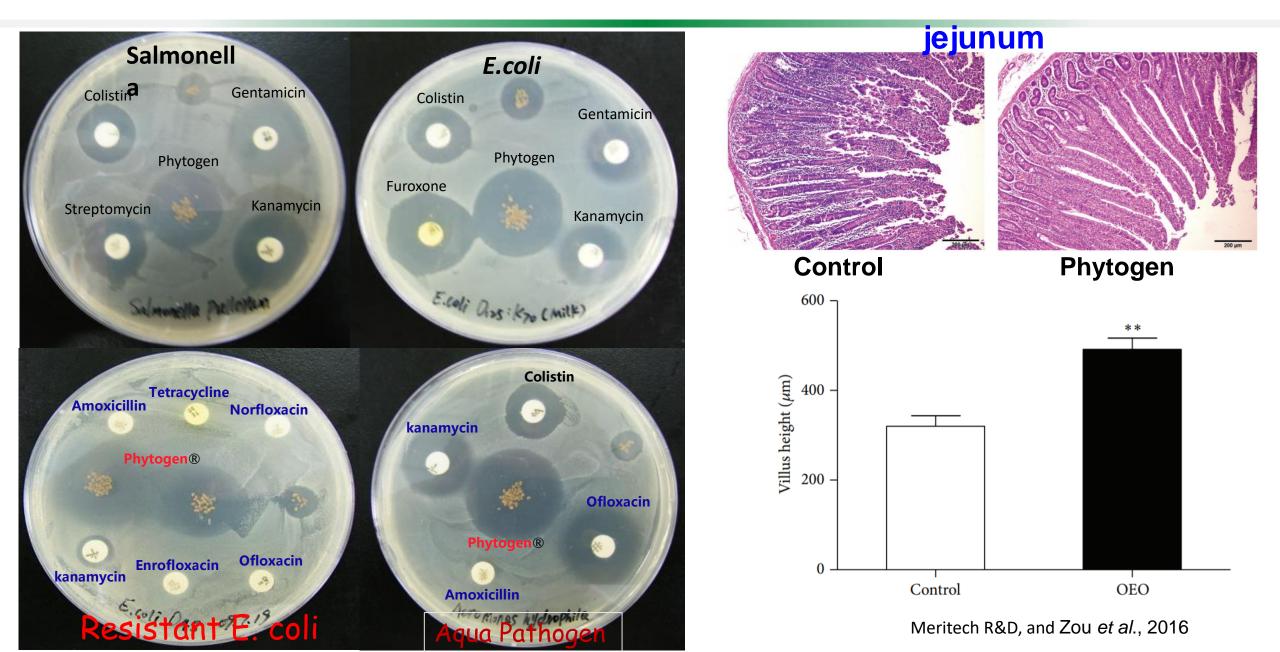
MERITECH

Chemical properties of essential oils popularly used in pig feeds

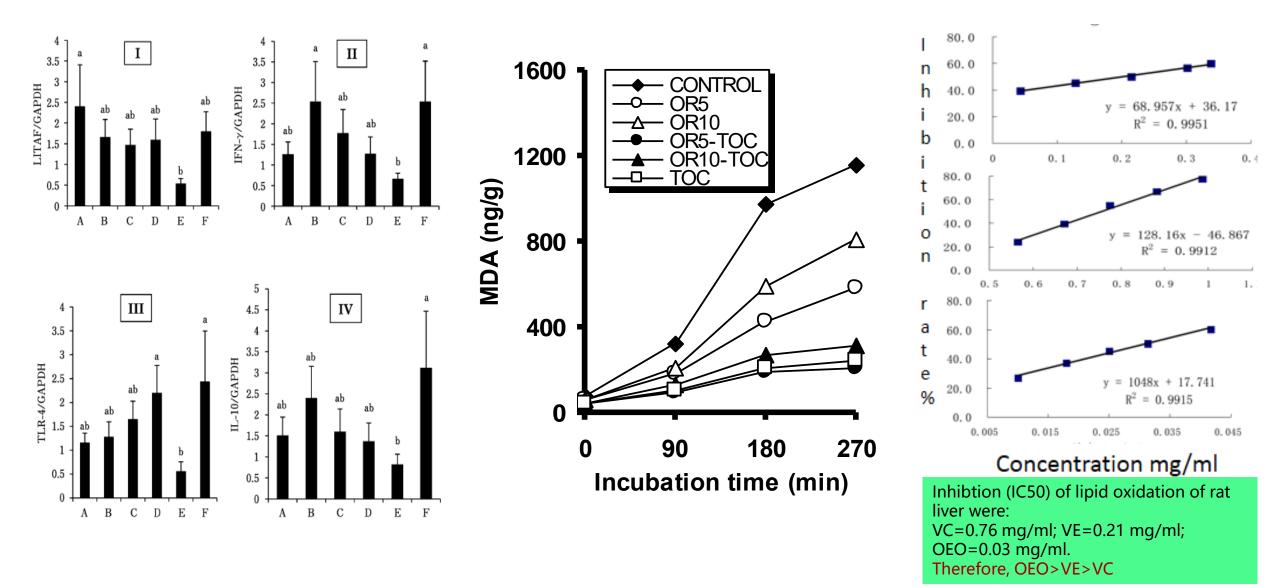
Compound	Carvacrol	Thymol	Citral	Eugenol	Cinnamaldehyde
Chemical structure	H ₃ C CH ₃	H ₃ C CH ₃ H ₃ C CH ₃	H ₃ C CH ₃	H ₂ C OH OCH ₃	H ₃ C _N H ₃ C _N CH ₃
Formula	C ₁₀ H ₁₄ O	C ₁₀ H ₁₄ O	C ₁₀ H ₁₆ O	$C_{10}H_{12}O_2$	C ₉ H ₈ O
Molecular mass, g/mol	150.2	150.2	152.2	164.2	132.2
Density, kg/m ³	976	969	893	1,067	1,050
Melting point, °C	0 to 2	49 to 52	-10	-12 to -10	-7.5
Boiling point, °C	234 to 238	232 to 233	229	253	246 to 251
Vapor pressure at 20 °C, Pa	35	250 (50 °C) to 133 (64 °C)	22	133 (78 °C)	3.85
Solubility in water, g/L	0.83 to 1.10	0.85-1.01 to 1.4 (40 °C)	0.59	0.80 to 2.41	1.42 to 1.45
Solubility in ethanol, g/L	Good	1,000	Good	500 (in 70%), good	150 (in 60%), good
Octanol/water partition	3.38 to 3.64	3.30	2.8 to 3.0	2.99	1.9
Coefficient, log Kow					
pKa value	10.4	10.4	_	_	_
Physical appearance at room temperature	Colorless to pale yellow liquid	White crystalline powder or large colorless crystals	Pale yellow liquid	Colorless or pale yellow, thin liquid	Clear yellowish liquid

Omonijo et al., 2017

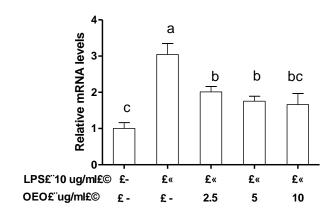
Minimum inhibition concentration (MIC)



Product	Pathogenic microbe	Gram	MIC (unit)	MIC (#)	Reference
Thymol	Lactococcus piscicum	+	mg/L	320	Navarrete et al., 2010
	Streptococcus phocae	+	mg/L	640	Navarrete et al., 2010
	Flavobacteriaum psychrophilum	-	mg/L	320	Navarrete et al., 2010
	Vibrio anguillarum	-	mg/L	80	Navarrete et al., 2010
	Vibrio parahaemolyticus	_	mg/L	320	Navarrete et al., 2010
	Pseudomonus sp.	_	mg/L	640	Navarrete et al., 2010
	Brachyspira hyodysenteriae	-	mmol/L	1.25	Vande Maele et al., 2016
	Escherichia coli 0157:H7	-	μg/mL	166	Si et al., 2006
	Salmonella typhimurium DT104	-	μg/mL	233	Si et al., 2006
	Escherichia coli K88	-	μg/mL	100	Si et al., 2006
	Lactococcus lactis	+	mg/L	1,280	Navarrete et al., 2010
Eugenol	Vibrio sp.	-	μg/mL	156	Seongwei et al., 2009
	Escherichia coli	-	μg/mL	625	Seongwei et al., 2009
	Salmonella	-	μg/mL	156	Seongwei et al., 2009
	Pseudomonas sp.	-	μg/mL	325	Seongwei et al., 2009
	Edwardsiella tarda	-	μg/mL	56 to 125	Seongwei et al., 2009
	Aeromonas hydrophilla	-	μg/mL	625	Seongwei et al., 2009
	Brachyspira hyodysenteriae	-	mmol/L	2.5	Vande Maele et al., 2016
	Escherichia coli 0157:H7	-	μg/mL	466	Si et al., 2006
	Salmonella typhimurium DT104	_	μg/mL	400	Si et al., 2006
	Escherichia coli K88	-	μg/mL	300	Si et al., 2006
Carvacrol	Listonella anguillarum	_	μg/mL	25	Volpatti et al., 2013
	Brachyspira hyodysenteriae	_	mmol/L	1.25	Vande Maele et al., 2016
	Escherichia coli 0157:H7	_	μg/mL	283	Si et al., 2006
	Salmonella typhimurium DT104	-	μg/mL	167	Si et al., 2006
	Escherichia coli K88	_	μg/mL	100	Si et al., 2006
Cinnamaldehyde	Brachyspira hyodysenteriae	-	mmol/L	0.31	Vande Maele et al., 2016
-	Escherichia coli 0157:H7	-	μg/mL	133	Si et al., 2006
	Salmonella typhimurium DT104	-	μg/mL	100	Si et al., 2006
	Escherichia coli K88	_	μg/mL	133	Si et al., 2006

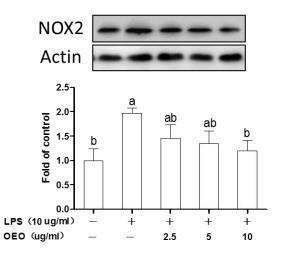

Omonijo et al., 2017

Antimicrobial effects and gut development of piglets


Oregano downregulated ileal IL-6 and tonsil LITAF, IFN-γ, TLR4 and IL-10 gene expression & exerted a significant anti-inflammatory effect

Meritech R&D, and Hang L. *et al.*, 2012

Mode of Action of Anti-oxidative effects of Phytogen Meritech


NOX2 gene expression

NOX2 Enzyme activity NADPH concentration IU/ml 30· a b b -20. С LPS£"10 uq/ml£© £-£« £« £« £« OEO£"ug/ml£© £ £ -2.5 5 10

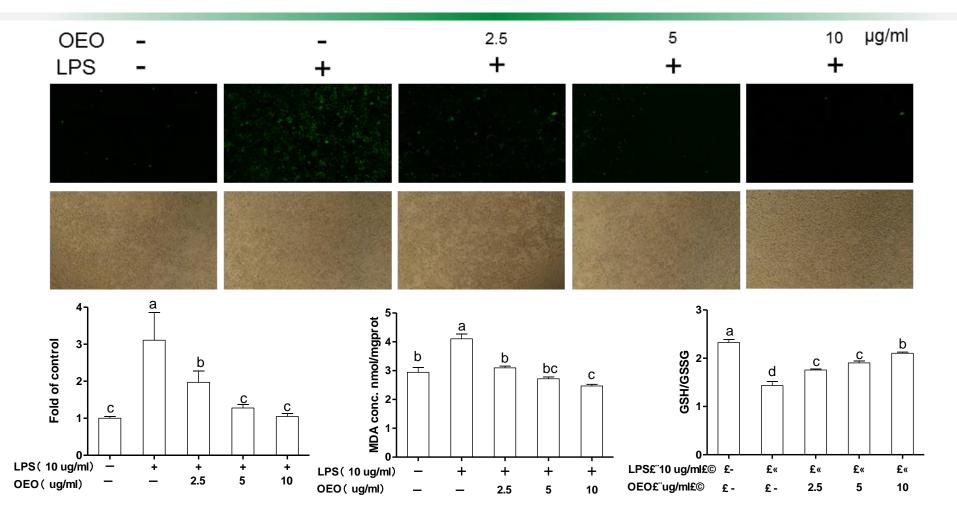
note : Phytogen supplied from Meirtech

NOX2 protein expression

Research Article

Oregano Essential Oil Induces SOD1 and GSH Expression through Nrf2 Activation and Alleviates Hydrogen Peroxide-Induced Oxidative Damage in IPEC-J2 Cells

Yi Zou,¹ Jun Wang,¹ Jian Peng,^{1,2} and Hongkui Wei¹


¹Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China

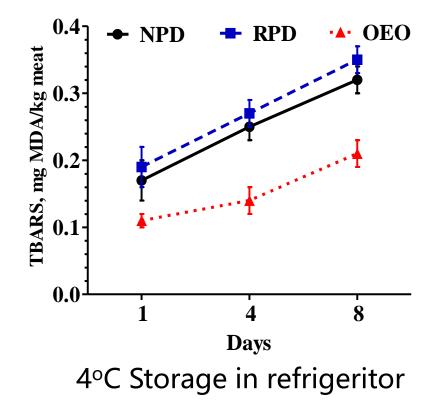
²The Cooperative Innovation Center for Sustainable Pig Production, Wuhan 430070, China

Correspondence should be addressed to Jian Peng; pengjian@mail.hzau.edu.cn and Hongkui Wei; weihongkui@mail.hzau.edu.cn

Received 20 July 2016; Revised 29 September 2016; Accepted 14 November 2016

Mode of Action of Anti-oxidative effects of Phytogen

• OEO can reduce cellular anti-oxidative stress, through reducing ROS and MDA and enhancing the ratio of GSH : GSSG


note : OEO=Phytogen from Meritech

Use of Phytogen in grower-finisher pigs with AGP-freedWernech

- improve BW/FCR
- reduce cost of pork

Trransport effect to finishers

	Control	Phytogen	SEM
Live wt loss (%)	3.32 ^a	2.10 ^b	0.11
Carcass wt (kg)	68.42 ^b	73.39 ^a	0.71

Meat Science, 2017

Multiple active ingredients in Phytogenics

Plants	Antioxidant	Antiviral	Bactericide
Bay	3	5	5
Cassia	3	3	3
Cayenne	9	6	8
Cumin	5	7	11
Garlic	9	5	13
Ginger	6	6	17
Oregano	14	11	19
Rosemary	12	10	19
Sage	7		6
<i>Sage Thyme</i>	4	3	5

Summary: Strategies to AGP-free diets for piglets

- Bio-security: tight and strict control
- Reducing pathogens and microbial load thru improving protein disgestibility and using higher inert fiber
- Alternatives to AGP
 - Acidifiers
 - Phytogenics
 - MSFA
 - Probiotics/Prebiotics
 - Anti-Microbilal Peptide (not approved by MOA China)
 - Other magics in the market

Thanks for your

attention For cooperation or emploment pls contact: jin@meritech.com.cn; mobile: +86 139 2515 0898)

China office: Address: 405 of R&D Area A Guangzhou Intl Bio-Island

Singapore office: Address: 10 Anson Road #27-15 International Plaza